数学学科Seminar第2663讲 分数阶最优控制问题的谱方法的误差分析

创建时间:  2024/05/31  龚惠英   浏览次数:   返回

报告题目 (Title):Error analysis of spectral method for fractional optimal control problems (分数阶最优控制问题的谱方法的误差分析)

报告人 (Speaker):陈艳萍 教授(南京邮电大学)

报告时间 (Time):2024年6月4日(周二) 10:00-12:00

报告地点 (Place):校本部F309

邀请人(Inviter):李常品、蔡敏

主办部门:金沙威尼斯欢乐娱人城数学系

报告摘要:In this talk, we investigate an optimal control problem governed by a time fractional diffusion equation with non-homogeneous boundary condition. We construct a suitable weak formulation, study its well-posedness, and develop a spectral Galerkin method for its numerical solution. The main contributions of this work are: 1) the study of optimality conditions, which is crucial for analyzing the optimal control problem; 2) the derivation of a priori error estimates for the space-time spectral approximation; 3) the derivation of a posteriori error estimates for the state, costate, and control approximations; 4) the conduct of numerical experiments to confirm the efficiency of the proposed method. The obtained numerical results demonstrate exponential convergence for smooth exact solutions.

上一条:数学学科Seminar第2664讲 强迫四个不同特征值的不可约4×4符号模式矩阵

下一条:数学学科Seminar第2662讲 退化过程启发的CT成像算法


数学学科Seminar第2663讲 分数阶最优控制问题的谱方法的误差分析

创建时间:  2024/05/31  龚惠英   浏览次数:   返回

报告题目 (Title):Error analysis of spectral method for fractional optimal control problems (分数阶最优控制问题的谱方法的误差分析)

报告人 (Speaker):陈艳萍 教授(南京邮电大学)

报告时间 (Time):2024年6月4日(周二) 10:00-12:00

报告地点 (Place):校本部F309

邀请人(Inviter):李常品、蔡敏

主办部门:金沙威尼斯欢乐娱人城数学系

报告摘要:In this talk, we investigate an optimal control problem governed by a time fractional diffusion equation with non-homogeneous boundary condition. We construct a suitable weak formulation, study its well-posedness, and develop a spectral Galerkin method for its numerical solution. The main contributions of this work are: 1) the study of optimality conditions, which is crucial for analyzing the optimal control problem; 2) the derivation of a priori error estimates for the space-time spectral approximation; 3) the derivation of a posteriori error estimates for the state, costate, and control approximations; 4) the conduct of numerical experiments to confirm the efficiency of the proposed method. The obtained numerical results demonstrate exponential convergence for smooth exact solutions.

上一条:数学学科Seminar第2664讲 强迫四个不同特征值的不可约4×4符号模式矩阵

下一条:数学学科Seminar第2662讲 退化过程启发的CT成像算法