金沙威尼斯欢乐娱人城核心数学研究所——几何与分析综合报告第98讲 Filtered Lp算子代数的定量K-理论的持久近似性质

创建时间:  2024/11/20  龚惠英   浏览次数:   返回

报告题目 (Title):Persistence approximation property for quantitative K-theory of filtered Lp operator algebras(Filtered Lp算子代数的定量K-理论的持久近似性质)

报告人 (Speaker):周大鹏(上海对外经贸大学)

报告时间 (Time):2024年11月22日(周五) 16:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):席东盟、李晋、吴加勇

主办部门:金沙威尼斯欢乐娱人城数学系

报告摘要:Quantitative K-theory is a refinement of ordinary operator K-theory. It was developed by Guoliang Yu in his work on the Novikov conjecture for groups with finite asymptotic dimension, and has been studied systematically by Oyono-Oyono and Yu. To explore a way of approximating K-theory with quantitative K-theory, Oyono-Oyono and Yu studied the persistence approximation property for quantitative K-theory of filtered C∗-algebras. In this talk, we extend these methods and results to Lp operator algebras. This is a joint work with Hang Wang, Yanru Wang and Jianguo Zhang.

上一条:数学学科Seminar第2775讲 运筹学:人工智能时代面临的机遇与挑战

下一条:金沙威尼斯欢乐娱人城核心数学研究所——几何与分析综合报告第97讲 高阶Kazhdan 投影


金沙威尼斯欢乐娱人城核心数学研究所——几何与分析综合报告第98讲 Filtered Lp算子代数的定量K-理论的持久近似性质

创建时间:  2024/11/20  龚惠英   浏览次数:   返回

报告题目 (Title):Persistence approximation property for quantitative K-theory of filtered Lp operator algebras(Filtered Lp算子代数的定量K-理论的持久近似性质)

报告人 (Speaker):周大鹏(上海对外经贸大学)

报告时间 (Time):2024年11月22日(周五) 16:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):席东盟、李晋、吴加勇

主办部门:金沙威尼斯欢乐娱人城数学系

报告摘要:Quantitative K-theory is a refinement of ordinary operator K-theory. It was developed by Guoliang Yu in his work on the Novikov conjecture for groups with finite asymptotic dimension, and has been studied systematically by Oyono-Oyono and Yu. To explore a way of approximating K-theory with quantitative K-theory, Oyono-Oyono and Yu studied the persistence approximation property for quantitative K-theory of filtered C∗-algebras. In this talk, we extend these methods and results to Lp operator algebras. This is a joint work with Hang Wang, Yanru Wang and Jianguo Zhang.

上一条:数学学科Seminar第2775讲 运筹学:人工智能时代面临的机遇与挑战

下一条:金沙威尼斯欢乐娱人城核心数学研究所——几何与分析综合报告第97讲 高阶Kazhdan 投影