数学学科Seminar第2728讲 调和映射的正则性理论及推广

创建时间:  2024/09/26  龚惠英   浏览次数:   返回

报告题目 (Title):调和映射的正则性理论及推广

报告人 (Speaker):郭常予 教授(山东大学)

报告时间 (Time):2024年9月27日(周五) 14:00

报告地点 (Place):线上腾讯会议 (会议号:282 211 281)

邀请人(Inviter):赵发友 教授

主办部门:金沙威尼斯欢乐娱人城 数学系

报告摘要:In this talk, I will give an overview of the regularity theory concerning the singular set of harmonic mappings into closed manifolds. In particular, we recall the classical stratification theory for harmonic mappings based on the fundamental work of Schoen-Uhlenbeck [J. Diff. Geom. 1982], L. Simon [CVPDE 1995] and F.H. Lin [Ann. Math. 1999]. Then we introduce the quantitative stratification theory developed by Cheeger-Naber [Invent. Math. 2013], and by Naber-Valtorta [Ann. Math. 2017, arXiv 2024]. Finally, we briefly discuss the natural extension to half/bi-harmonic mappings and almost complex structure. The talk is based on recent joint works with Guichun Jiang, Changyou Wang, Changlin Xiang and Gaofeng Zheng.

上一条:数学学科Seminar第2729讲 关于函数空间中一个振荡积分算子的估计

下一条:数学学科Seminar第2727讲 非一致索伯列夫空间


数学学科Seminar第2728讲 调和映射的正则性理论及推广

创建时间:  2024/09/26  龚惠英   浏览次数:   返回

报告题目 (Title):调和映射的正则性理论及推广

报告人 (Speaker):郭常予 教授(山东大学)

报告时间 (Time):2024年9月27日(周五) 14:00

报告地点 (Place):线上腾讯会议 (会议号:282 211 281)

邀请人(Inviter):赵发友 教授

主办部门:金沙威尼斯欢乐娱人城 数学系

报告摘要:In this talk, I will give an overview of the regularity theory concerning the singular set of harmonic mappings into closed manifolds. In particular, we recall the classical stratification theory for harmonic mappings based on the fundamental work of Schoen-Uhlenbeck [J. Diff. Geom. 1982], L. Simon [CVPDE 1995] and F.H. Lin [Ann. Math. 1999]. Then we introduce the quantitative stratification theory developed by Cheeger-Naber [Invent. Math. 2013], and by Naber-Valtorta [Ann. Math. 2017, arXiv 2024]. Finally, we briefly discuss the natural extension to half/bi-harmonic mappings and almost complex structure. The talk is based on recent joint works with Guichun Jiang, Changyou Wang, Changlin Xiang and Gaofeng Zheng.

上一条:数学学科Seminar第2729讲 关于函数空间中一个振荡积分算子的估计

下一条:数学学科Seminar第2727讲 非一致索伯列夫空间