报告题目 (Title):Bezout, Cayley-Bacharach, and associativity of the group action on an elliptic curve (Bezout定理、Cayley-Bacharach定理,以及椭圆曲线上群作用的结合律)
报告人 (Speaker): Peter van der Kamp 教授(La Trobe University, Australia)
报告时间 (Time):2024年09月25日(周三) 15:30-17:00
报告地点 (Place):校本部GJ303
邀请人(Inviter):张大军 教授
主办部门:金沙威尼斯欢乐娱人城数学系
报告摘要:
I will state Bezout’s theorem, and will explain how to determine the multiplicity of a point in the intersection of two plane curves (a la Fulton). I will then provide a geometric proof of the Cayley-Bacharach theorem, which is (only) based on Bezout’s theorem, and linear algebra. Some consequences are Pappus’s theorem, Pascal’s theorem, and the associativity of the group action on an elliptic curve.