数学学科Seminar第2715讲 可积自适应移动网格格式

创建时间:  2024/09/23  龚惠英   浏览次数:   返回

报告题目 (Title I):Constructions of integrable self-adaptive moving mesh schemes(可积自适应移动网格格式)

报告人 (Speaker):Kenichi Maruno教授 (早稻田大学)

报告时间 (Time):2024年09月22日 14:00-15:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):张大军 教授

主办部门:金沙威尼斯欢乐娱人城数学系

报告摘要:

We construct integrable self-adaptive moving mesh schemes for multi- component short pulse type equations under general boundary conditions including periodic boundary conditions by using the consistency condition of the hodograph transformation. Using our self-adaptive moving mesh schemes, we perform numerical experiments to evaluate their effectiveness and accuracy as a numerical method.

上一条:数学学科Seminar第2716讲 迟滞孤子方程

下一条:数学学科Seminar第2714讲 KP孤子、黎曼theta函数与顶点算子: I,II,III


数学学科Seminar第2715讲 可积自适应移动网格格式

创建时间:  2024/09/23  龚惠英   浏览次数:   返回

报告题目 (Title I):Constructions of integrable self-adaptive moving mesh schemes(可积自适应移动网格格式)

报告人 (Speaker):Kenichi Maruno教授 (早稻田大学)

报告时间 (Time):2024年09月22日 14:00-15:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):张大军 教授

主办部门:金沙威尼斯欢乐娱人城数学系

报告摘要:

We construct integrable self-adaptive moving mesh schemes for multi- component short pulse type equations under general boundary conditions including periodic boundary conditions by using the consistency condition of the hodograph transformation. Using our self-adaptive moving mesh schemes, we perform numerical experiments to evaluate their effectiveness and accuracy as a numerical method.

上一条:数学学科Seminar第2716讲 迟滞孤子方程

下一条:数学学科Seminar第2714讲 KP孤子、黎曼theta函数与顶点算子: I,II,III