数学学科Seminar第2678讲 Rogers-Ramanujan型等式与Nahm和

创建时间:  2024/07/02  龚惠英   浏览次数:   返回

报告题目 (Title):Rogers-Ramanujan型等式与Nahm和 (Rogers-Ramanujan type identities and Nahm sums)

报告人 (Speaker):王六权 教授(武汉大学)

报告时间 (Time):2024年7月2日(周二) 10:00—12:00

报告地点:校本部GJ303

邀请人(Inviter):王晓霞、陈旦旦

主办部门:金沙威尼斯欢乐娱人城数学系

报告摘要:Let $r\geq 1$ be a positive integer, $A$ a real positive definite symmetric $r\times r$ matrix, $B$ a vector of length $r$, and $C$ a scalar. Nahm's problem is to describe all such $A,B$ and $C$ with rational entries for which $$F_{A,B,C}(q)=\sum_{n=(n_1,\dots,n_r)\in (\mathbb{Z}_{r\geq 0})^r}\frac{q^{\frac{1}{2}n^\mathrm{T}An+n^\mathrm{T}B+C}} {(q)_{n_1}\cdots (q)_{n_r}}$$

is a modular form. Zagier completely solved the rank one case. When the rank $r=2,3$, Zagier presented many examples of $(A,B,C)$ for which $F_{A,B,C}(q)$ appears to be a modular form. We present a number of Rogers-Ramanujan type identities involving double and triple sums, which give modular form representations for Zagier’s rank two and rank three examples. We will also discuss the modularity of some other generalized Nahm sums.

上一条:物理学科Seminar第675讲 GPU加速的生物分子模拟

下一条:数学学科Seminar第2677讲 群概型、李代数函子和抽象群的Schur-Weyl对偶


数学学科Seminar第2678讲 Rogers-Ramanujan型等式与Nahm和

创建时间:  2024/07/02  龚惠英   浏览次数:   返回

报告题目 (Title):Rogers-Ramanujan型等式与Nahm和 (Rogers-Ramanujan type identities and Nahm sums)

报告人 (Speaker):王六权 教授(武汉大学)

报告时间 (Time):2024年7月2日(周二) 10:00—12:00

报告地点:校本部GJ303

邀请人(Inviter):王晓霞、陈旦旦

主办部门:金沙威尼斯欢乐娱人城数学系

报告摘要:Let $r\geq 1$ be a positive integer, $A$ a real positive definite symmetric $r\times r$ matrix, $B$ a vector of length $r$, and $C$ a scalar. Nahm's problem is to describe all such $A,B$ and $C$ with rational entries for which $$F_{A,B,C}(q)=\sum_{n=(n_1,\dots,n_r)\in (\mathbb{Z}_{r\geq 0})^r}\frac{q^{\frac{1}{2}n^\mathrm{T}An+n^\mathrm{T}B+C}} {(q)_{n_1}\cdots (q)_{n_r}}$$

is a modular form. Zagier completely solved the rank one case. When the rank $r=2,3$, Zagier presented many examples of $(A,B,C)$ for which $F_{A,B,C}(q)$ appears to be a modular form. We present a number of Rogers-Ramanujan type identities involving double and triple sums, which give modular form representations for Zagier’s rank two and rank three examples. We will also discuss the modularity of some other generalized Nahm sums.

上一条:物理学科Seminar第675讲 GPU加速的生物分子模拟

下一条:数学学科Seminar第2677讲 群概型、李代数函子和抽象群的Schur-Weyl对偶